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Title 
Determination of Network Origin-Destination Matrices Using Partial Link Traffic Counts and Virtual 
Sensor Information in an Integrated Corridor Management Framework 

Introduction 
Trip origin-destination (O-D) demand matrices are critical components in transportation network 
modeling, and provide essential information on trip distributions and corresponding spatiotemporal 
traffic patterns in traffic zones in vehicular networks. Trip O-D matrices also reflect traffic loadings and 
flow intensities in transportation networks, and are crucial inputs in determining short-term traffic 
control schemes and long-term transportation improvement programs, as well as offline transportation 
planning and online traffic management. Trip O-D demand matrices have traditionally been estimated 
by conducting household surveys or roadside interviews; however, this is infeasible because of the high 
cost and data recording errors involved. Inferring network O-D demand matrices using corresponding 
link flows is an effective alternative approach, because link flows, which are a set of traffic flows 
associated with the vehicular trip distributions of different O-D pairs, are easily obtained. Past studies on 
the estimation of network O-D demand matrices using link flow information have generally assumed 
that link flows are fully observable. However, in practice, highway agencies face budget constraints in 
implementing comprehensive sensor deployment plans, and assuming the full observability of link flows 
is unreasonable. Because of the rapid development of information and communication technologies 
(ICTs), applications of advanced sensor technologies to traffic management and operation have become 
widespread and essential. As a result, determining the strategic deployment of traffic sensors to obtain 
necessary traffic information for network O-D demand estimation has become crucial in transportation 
network research. 

The performance of a network O-D demand estimation model is strongly dependent on the quantity and 
quality of traffic data collected by different types of traffic sensors. The purpose of the Network Sensor 
Location Problem is to determine the optimal, minimum number of required traffic sensors and identify 
their corresponding installation locations, especially under the limited budget constraints of highway 
agencies. The collected partial link and path flow data are crucial inputs used to estimate corresponding 
O-D demands in a vehicular network. The strategic deployment of heterogeneous traffic sensors for 
network O-D demand estimation is a critical subject in transportation network science. The purpose of 
this study is to develop an integrated heterogeneous sensor deployment model to estimate network O-
D demands. One of the unique aspects of the proposed model framework is that it does not require the 
unreasonable assumption of known prior O-D demand information, turning proportions, or route choice 
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probabilities, enabling the network O-D demand and path flow estimation problems to be more 
practically traceable. 

Findings 
This study addresses the two primary objectives: 

1. Propose an effective generalized sensor location model for sensor location flow-observability and 
sensor location flow-estimation problems. 

2. Give an assumption-free, link-based network O-D demands estimation formulation by leveraging 
flow information provided by different sensor sources. 

This research proposes a “double dummy variable” concept to solve the heterogeneous sensor 
deployment problem for a vehicular network captured by its link-node incidence matrix. A generalized 
sensor location model was developed to simultaneously determine the optimal number and installation 
locations for both passive- and active-type sensors. The optimal sensor location policy is further applied 
to solve the network O-D demands estimation problem using a link-based flow estimation approach. The 
proposed integrated sensor location model takes full advantage of strategic link flow information 
provided by traditional vehicle detectors, and partial path flow information given by virtual sensors. The 
theoretical background and mathematical properties of the proposed model framework are elaborated. 
The major contribution of this research is the illustration of an integrated model framework for optimal 
heterogeneous sensor deployment policy, and its potential to the estimation of network O-D demands. 
One of the unique aspects of the proposed model framework is that it does not require the 
unreasonable assumption of known prior O–D demand information, turning proportions, or route choice 
probabilities, enabling the network O–D demand and path flow estimation problems to be more 
practically traceable. 

Recommendations 
This study solved the sensor location and network O-D demand estimation problems in two steps. The 
first step focuses on the generalized sensor location model, and the second step focuses on the O-D 
demand estimation model. These two steps are independent of each other. Two future research 
directions are proposed. First, bi-level programming, in which the upper level is a heterogeneous traffic 
sensor location model and the lower level is an O-D demand estimation model, can be studied based on 
the correlation between the upper and lower levels. Second, the heterogeneous traffic sensor location 
model can be integrated with the network O-D demand estimation model in a single-step framework. A 
bi-level, integrated model framework would be more straightforward and useful in practical 
applications. 

Contacts 
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Professor of Civil Engineering, & Director 

NEXTRANS Center 
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CHAPTER 1.  INTRODUCTION 

1.1 Background and motivation 

Trip origin–destination (O–D) demand matrices are critical components in 

transportation network modeling, and provide essential information on trip distributions 

and corresponding spatiotemporal traffic patterns in traffic zones in vehicular networks. 

Trip O–D matrices also reflect traffic loadings and flow intensities in transportation 

networks, and are crucial inputs in determining short-term traffic control schemes and 

long-term transportation improvement programs, as well as offline transportation 

planning and online traffic management. Trip O–D demand matrices have traditionally 

been estimated by conducting household surveys or roadside interviews; however, this is 

unfeasible because of the high cost and data recording errors involved. Inferring network 

O–D demand matrices using corresponding link flows is an effective alternative 

approach, because link flows, which are a set of traffic flows associated with the 

vehicular trip distributions of different O–D pairs, are easily obtained. Past studies on the 

estimation of network O–D demand matrices using link flow information have generally 

assumed that link flows are fully observable. However, in practice, highway agencies 

face budget constraints in implementing comprehensive sensor deployment plans, and 

assuming the full observability of link flows is unreasonable. Because of the rapid 

development of information and communication technologies (ICTs), applications of 

advanced sensor technologies to traffic management and operation have become 

widespread and essential. As a result, determining the strategic deployment of traffic 

sensors to obtain necessary traffic information for network O–D demand estimation has 

become crucial in transportation network research. 
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1.2 Study objectives 

The performance of a network O–D demand estimation model is strongly 

dependent on the quantity and quality of traffic data collected by different types of traffic 

sensors. The purpose of the network sensor location problem (NSLP) is to determine the 

optimal, minimum number of required traffic sensors and identify their corresponding 

installation locations, especially under the limited budget constraints of highway 

agencies. The collected partial link and path flow data are crucial inputs used to estimate 

corresponding O–D demands in a vehicular network. The strategic deployment of 

heterogeneous traffic sensors for network O–D demand estimation is a critical subject in 

transportation network science. The purpose of this study was to develop an integrated 

heterogeneous sensor deployment model to estimate network O–D demands. One of the 

unique aspects of the proposed model framework is that it does not require the 

unreasonable assumption of known prior O–D demand information, turning proportions, 

or route choice probabilities, enabling the network O–D demand and path flow estimation 

problems to be more practically traceable. 

1.3 Organization of the research 

The remainder of the research is organized as follows. Chapter 2 discusses the 

background of the problem and proposes the generalized sensor location model. Chapter 

3 presents the O–D demand estimation model, which is based on link and path flow 

information provided by vehicle detectors (VDs) and license plate recognition (LPR), 

respectively. Chapter 4 provides the results of the numerical analysis when using the 

proposed generalized sensor location model and O–D demand estimation model in a 

hypothetical network and a simplified real road network. Finally, in Chapter 5, we 

summarize this paper by providing insight and future research directions. 
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CHAPTER 2.  AN GENERALIZED SENSOR LOCATION MODEL 

This chapter introduces an generalized sensor location model for the estimation of 

network O-D demands estimation.  Section 2.1 states the background of the sensor 

location problem. Section 2.2 addresses the passive-type sensor location model. Section 

2.3 discusses the active-type sensor location model. Section 2.4 introduces the integrated 

heterogeneous sensor location by accommodating the various traffic flow information of 

different sensor sources. 

2.1 Problem statement 

To develop a generalized network sensor location model, this study considered 

both passive-type and active-type sensor location models. The two location models were 

integrated using a specially designed double 0-1 dummy variable concept to infer and/or 

estimate network flow. 

Before illustrating the generalized network sensor location model, the problem of 

multiple solutions is discussed. Table 1 shows the feasible solutions of an NSLP required 

to enable the full observability of link flows (Hu et al., 2009). The demonstration network 

in Table 1 consists of 9 nodes and 16 unidirectional links, where Nodes 1, 3, 7, and 9 are 

centroid nodes and Nodes 2, 4, 5, 6, 8 are noncentroid or intermediate nodes (Ng, 2012). 

To fully observe link flows in this hypothetical network, the minimal number of 

links to be equipped with traffic sensors, as shown in Table 1 those links with solid 

arrows, is 11. However, as depicted by the four feasible solutions in Scenarios A through 

D, the 11 sensors could be installed in multiple configurations. To connect to Node 5, 

Scenario A requires three deployed sensors, Scenario B requires four deployed sensors, 

Scenario C requires five deployed sensors, and Scenario D requires six deployed sensors. 
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These numbers differ because the number of sensors is strongly dependent on the sensor 

deployment conditions of Node 5’s upstream and downstream nodes. The dependent 

relationship is a chain. Similar to certain sensor location models, including the link-path 

incidence and the O-D/path/link incidence matrices, this matrix was constructed based on 

the spatial relationship between upstream and downstream nodes for each path or O-D 

pair, enabling the dependent chain to be systematically traced using a pre-specified 

incidence matrix. However, as previously discussed, such an incidence matrix is difficult 

to obtain in practice because of the path enumeration problem. On the other hand, sensor 

location models based on link-node incidence matrices cannot directly capture sensor 

deployment conditions on specific links for an intermediate node’s upstream and 

downstream nodes; a specific technique is required to manage this situation. This study 

adopted the link-node incidence matrix approach to easily obtain sensor deployment 

conditions based on the network’s topology. This enabled the degree conditions of each 

node to be individually investigated and used in constructing respective flow 

conservation constraints based on a specially designed double 0-1 dummy variable to 

solve the chain problem. 

Table 1. Available solutions for full link flow observability. 

Scenario A Scenario B 

1 2 3

4 5 6

7 8 9  

1 2 3

4 5 6

7 8 9  

Scenario C Scenario D 
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1 2 3

4 5 6

7 8 9  

1 2 3

4 5 6

7 8 9  

Note: the solid arrow denotes a sensor equipped link; the dotted arrow denotes an 

unequipped link. 

2.2 Passive-type sensor location model 

The passive-type sensors considered in the passive-type sensor location model 

were VDs, which can be used to collect link traffic flows or counts. The ideal passive-

type sensor location model was based on the degree constraint and link flow conservation 

rule of the nodes. To determine the link flow conservation rule of an intermediate node 

(Ng, 2012), the total input flow must be equal to total output flow at that node. In the 

network in Fig. 1, for example, the summation of link flows in Links 1-3 and 2-3 is equal 

to that of Links 3-4 and 3-5, and one link flow can be inferred by the flow information 

contained in the other three links. The flow conservation condition for Node 3 is shown 

in Eq. 1.  

 

1

2

3

4

5
 

Fig. 1. Example network 1. 
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13 23 34 35x x x x+ = + , (1) 

where ijx  is the link flow from node i to node j.  

Eq. 1 can be augmented in Eq. 2 by incorporating a 0-1 variable, and Eq. 2 is 

calculated according to the flow conservation rule. 

13 23 34 351 1 1 1x x x x⋅ + ⋅ = ⋅ + ⋅  (2) 

If the flow conservation rule causes each element of Eq. 2 to move arbitrarily 

from the left-hand side (LHS) to the right-hand side (RHS), the flow conservation rule 

remains valid. Based on Eq. 2, it is obvious that an arbitrary element x can be calculated 

according to the remaining elements. If 35x  is selected as a particular element, then Eq. 2 

can be converted into Eq. 3. Based on Eq. 3, it is also clear that if 13 23 34, ,x x x  are 

observed by traffic sensors, then 35x  can be calculated according to the flow conservation 

rule. 

    (3) 

In other words, to guarantee full link flow observability for the simple network 

shown in Fig. 1, the number of deployed sensors must be three (one link is an unequipped 

link). If Eq. 3 does not include flow information, then the flow information can be 

formulated using 0-1 binary variables: three red 1s and one blue 1 (see Eq. 4).  

[ , ,1 1 1] 1=  (4) 

Eq. 4 represents the network topology condition for the full observability of a link 

flow at a node; flow information and signs (plus or minus) can be neglected in such a 

formulation. Eq. 4 also indicates that the size of the LHS is dependent on the connectivity 

of a node, and the size of the RHS is always 1. The concepts of in-degree and out-degree 
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were introduced and incorporated into Eq. 4, to satisfy the new constraint, referred to as 

the “degree constraint” (see Eq. 5). 

3 3| ID | | OD |1 21 11 21+ + = + − = + −  (5) 

where, 

3

3

| ID |: the size of in-degree for Node 3;
| O D |: the size of out-degree for Node 3;

  

For Node 3, the in-degree is 2 and the out-degree is 2, and the total degree value 

is 4. Eq. 5 yields the relationship between equipped links (three red 1s), the unequipped 

link (one blue 1), and the sizes of the in-degree and out-degree. Based on the flow 

conservation rule and the degree constraint, we can conclude that the number of deployed 

sensors for an intermediate node is equal to the total degree value minus 1. This is the 

definition of the degree constraint (see Eq. 6). 

DC :| ID | | OD | 1j j j+ −  (6) 

where,  

DC : degree constraint for Node ;

| ID |: the size of in-degree for Node ;

| OD |: the size of out-degree for Node .

j

j

j

j
j

j

  

By using the degree constraint and the flow conservation rule to obtain the 

minimal number of deployed sensors in the passive-type sensor location model, the 

“reduplication problem” may arise. This is when two neighboring nodes share the same 

link as an equipped link, resulting in overestimation of the number of required sensors for 

the full observability of link flows. For example, if Link 3-6 in the simple network in Fig. 

2 is chosen as an unequipped link, then the degree constraint is satisfied for both Node 3 

and Node 6. However, if Link 3-6 is assigned as an unequipped link for Node 3, then a 
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different link must be selected as the unequipped link for Node 6; thus, a systematic 

mechanism is required to avert the selection of Link 3-6 as an unequipped link for Node 

6. Relationships between neighboring nodes related to equipped or unequipped links are 

“series chains.” Using a single 0-1 binary variable to determine sensor deployment 

conditions for a specific link is inadequate to describe these chains, and the reduplication 

problem may arise.  

 

 

 

1

2

3

5

6

7

84  

Fig. 2. Example network 2 for the reduplication problem. 

Note: the solid arrow denotes a sensor equipped link; the dotted arrow denotes an 

unequipped link. 

 

To solve the reduplication problem, double 0-1 binary variables were introduced 

to break chains from a set of nodes. Specifically, each link was labeled with two 0-1 

binary variables instead of a single 0-1 binary variable. The definitions of the double 0-1 

binary variables are described in Eqs. 7 and 8. 

1,for Node , the flow on Link -  can be collected by sensor or inferable
( ) ;

0,for Node , Link -  is an unequipped link                                             ij

i i j
b i

i i j


= 


 (7) 
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1,for Node , the flow on Link -  can be collected by sensor or inferable
( ) .

0,for Node , Link -  is an unequipped link                                             ij

j i j
b j

j i j


= 


 (8) 

In Eqs. 7 and 8, a specific Link i-j in a target network is characterized by double 

0-1 binary variables, ( )ijb i  and ( )ijb j ; the first variable denotes the tail node i and the 

second variable denotes the head node j. Thereby, from a sensor deployment perspective 

four possible combinations of the double dummy binary variables for a specific Link i-j 

can be identified: 

1) When ,( ) 1i jb i =  and ,( ) 1i jb j =  holds, for Node i, Link i-j is an equipped 

link; for Node j, Link i-j is also an equipped link. Since Link i-j is equipped with a 

sensor, for the head Node j, it can choose one of its remaining adjacent links as an 

unequipped link. 

2) When ,( ) 0i jb i =  and ,( ) 1i jb j =  holds, it means that for Node i, Link i-j is 

an unequipped link; for Node j, flow on Link i-j is inferable. Since flow on Link i-j can 

be inferred, for the head Node j it can choose one of its remaining adjacent links as an 

unequipped link except for Link i-j. 

3) When ,( ) 1i jb i =  and ,( ) 0i jb j =  holds, this scenario is similar to that of 

,( ) 0i jb i =  and ,( ) 1i jb j = . For the tail Node i, flow on Link i-j is inferable and it can 

choose one of its remaining adjacent links as an unequipped link. For the head Node j, 

Link i-j is an unequipped link but flow on Link i-j can be inferred. 

4) If ( ) ( ) 0ij ijb i b j= = , this scenario is prohibited due to the reduplication 

problem. For Node i and Node j, they cannot simultaneously select Link i-j as an 

unequipped link. 

In summary, three possible results can be obtained: 1) if ,( ) 1i jb i =  and ,( ) 1i jb j = , 

then Link i-j is an equipped link; 2) if ,( ) 1i jb i = , ,( ) 0i jb j =  or ,( ) 0i jb i = , ,( ) 1i jb j = , 
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then Link i-j is an unequipped but flow-inferable link; and 3) if ,( ) 0i jb i =  and 

,( ) 0i jb j = , this is a prohibited scenario which will be avoided in later modeling process.  

When Eqs. 7 and 8 are equal to one; it means that they will give positive one into 

the degree constraint (see Eq. 6). Based on the designated double 0-1 binary variables, 

degree constraints can be independently set up for each intermediate node and the 

reduplication problem can be avoided. Table 2 shows a set of feasible solutions for 

Example network 2 (Fig. 2), where Link 3-6 is an unequipped link for Node 3, and Link 

6-8 is an unequipped link for Node 6; this set of feasible solutions is not prone to the 

reduplication problem. Accordingly, we developed a mathematical program to minimize 

the number of passive-type sensors required for full observability of link flows, and the 

constraints are essentially node-degree constraints captured by a set of double 0-1 binary 

variables. 

Table 2. A Set of feasible solutions for example network 2. 

Node # Value of double 0-1 binary 

variable 
Degree constraint 

Node 3 1,3 2,3

3,5 3,6

(3) 1, (3) 1,
(3) 1, (3) 0

b b
b b

= =

= =
 3 1,3 2,3 3,5 3,6

3 3

DC (3) (3) (3) (3)
       | ID | | OD | 1 3

b b b b= + + +

= + − =
 

Node 6 3,6 4,6

6,7 6,8

(6) 1, (6) 1,
(6) 1, (6) 0

b b
b b

= =

= =
 6 3,6 4,6 6,7 6,8

6 6

DC (6) (6) (6) (6)
       | ID | | OD | 1 3

b b b b= + + +

= + − =
 

 

The passive-type sensor location model is formulated as follows: 

,
( , )

Min i j
i j

ps
∈
∑

A
 (9) 
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s.t.  

| | | |

, ,( ) ( ) | ID | | OD | 1,i j j k j j
i k

b j b j j+ = + − ∀ ∈ − −∑ ∑
I K

N R S  (10) 

, ,( ) ( ) 1, , , ( , )i j i jb i b j i j i j+ ≥ ∀ ∈ − − ∈N R S A  (11) 

, ,( ) ( ) 1, , , ( , )j i i jb i b j i j i j+ ≥ ∀ ∈ − − ∈N R S A  (12) 

, ,( ) ( ) 1, , , ( , )i j j ib i b j i j i j+ ≥ ∀ ∈ − − ∈N R S A  (13) 

, , ,( ) ( ) 1 , ( , )i j i j i jb i b j ps i j+ − = ∀ ∈ A  (14) 

where,  

,

1,a passive-type sensor is deployed on link -
;

0,                         otherwise                             
: node set;
: link  set;
: a set of origin centroids, ;
: a set of destination c

i j

i j
ps 

= 


⊆

N
A
R R N
S entroids, .⊆S N

  

The passive-type sensor location model is based on the link-node relationship, and 

uses double 0-1 binary variables to determine the nominal (minimal) required number of 

passive-type sensors. Eq. 9 is the objective function of the minimization problem, and is 

formulated as a linear program. Eq. 10 is the degree constraint required for full link flow 

observability. Eq. 11 is the “reduplication constraint”. Based on the illustrated results 

shown in Table 2, to avoid selecting Link 3-6 twice, 3,6 3,6(3) (6) 1 1b b+ = ≥ . Therefore one 

of the double 0-1 binary variables characterizing the same link in a neighboring node 

must be 1; for example, 3,6 3,6(3) 0, (6) 1b b= = or 3,6 3,6(3) 1, (6) 0b b= = . Eqs. 12 and 13 are 
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the “contradiction constraints”, and prevent bidirectional links from being selected as 

unequipped links, to maintain the flow conservation rule. Because the DC (Eq. 6) is 

derived from the flow conservation rule (Eq. 1), when a pair of bidirectional links is 

simultaneously selected as unequipped links, the flows on these bidirectional links cannot 

be inferred by using the flow conservation rule, and such a problem is defined as the 

“contradiction problem” in this research. Using the bidirectional Link 3-6 in Fig. 3 as an 

example, the double binary 0-1 variable results of selecting Link 3-6 as an unequipped 

link for Node 3, and Link 6-3 as an unequipped link for Node 6, are shown in Table 3; as 

indicated, the results remain within the degree constraints. Therefore, the flow across 

Link 3-6 for Node 3 is inferable based on the observed flow across Link 6-3, and the flow 

across Link 6-3 for Node 6 is inferable based on the observed flow across Link 3-6. This 

results in the contradiction problem; that is, when Links 3-6 and 6-3 are both selected as 

unequipped links, Link 3-6 requires the flow information of Link 6-3, and Link 6-3 also 

requires the flow information of Link 3-6. Consequently, flows on these two specific 

links are not inferable. Accordingly, we need the design of Eqs. 12 and 13 for double 0-1 

binary variables in neighboring nodes, which can effectively resolve the contradiction 

problem. 

 

1

2

3

5

6

7

84  

Fig. 3. Example network 3 for the contradiction problem. 

 

Table 3. Unreasonable results for example network 3 for the contradiction problem. 
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Node # Value of double 0-1 binary 

variable 
Degree constraint 

Node 3 1,3 2,3

3,5 3,6

6,3

(3) 1, (3) 1,
(3) 1, (3) 0,
(3) 1

b b
b b
b

= =

= =

=

 
3 1,3 2,3 3,5 3,6 6,3

3 3

DC (3) (3) (3) (3) (3)
       | ID | | OD | 1 4

b b b b b= + + + +

= + − =

 

Node 6 3,6 4,6

6,7 6,8

6,3

(6) 1, (6) 1,
(6) 1, (6) 1,
(6) 0

b b
b b
b

= =

= =

=

 
6 3,6 4,6 6,7 6,8 6,3

6 6

DC (6) (6) (6) (6) (6)
       | ID | | OD | 1 4

b b b b b= + + + +

= + − =

 

 

Eq. 14 is the “identification equation”. According to Eq. 11, 

, ,1 ( ) ( ) 2i j i jb i b j≤ + ≤ . Eq. 14 yields a value of either 0 or 1; if 0, then the link is an 

unequipped link; if 1, then the link must be equipped with a passive-type sensor. 

Additionally, Eqs. 11 to 13 do not consider origin and destination nodes, it means that 

there is no ,( )r ib r  and ,( ) j sb s . This research sets up the default values of ,( )r ib r  and 

,( ) j sb s  as 1 for the passive-type sensor deployment model. 

2.3 Active-type sensor location model 

The active-type sensors considered in this paper are license plate recognition (LPR) 

sensors. LPR sensors can collect information on link flows, vehicular trajectories, and 

route flows. The active-type sensor location model is based on the concept of path 

observability, and the path observability of a specific node is based on its incident links. 

Theoretically, the necessary condition for the full path observability of a given path is the 

number of adjacent links at a node minus 1. Using the simple network shown in Fig. 1 as 

an example, if active-type sensors are located on Links 1-3, 2-3, and 3-4, then the 

vehicular trajectories are 1-3, 2-3, 3-4, 1-3-4, and 2-3-4, where 1-3-4 and 2-3-4 are the 

complete paths, and 1-3, 2-3, and 3-4 are the incomplete paths. However, flows of 1-3-5 
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can be determined by comparing to flows of 1-3 and 1-3-4, and the difference between 2-

3 and 2-3-4 represents 2-3-5. Because the condition of full path observability is equal to 

the degree constraints, the active-type sensor location model can be formulated similarly 

to the passive-type sensor location model, although the active-type sensor location model 

yields links with various weights; that is, it yields links with various priorities. Links 

connected to origin and destination nodes have a high selection priority, because their 

routes and/or O-D patterns can potentially be identified. Consequently, links connected to 

origin and destination nodes are assigned larger weights expressed in absolute values in 

this minimization program. The active-type sensor location model is formulated as 

follows:  

, , ,
( , ) ( , ) ( , )

Min ,sr i j s i j
r i j s i j

as as as rα β
∈ ∈ ∈

   
+ + ∀ ∈ ∈   

   
∑ ∑ ∑

A A A
R S  (15) 

s.t.  

Eqs. 10 through 13  

, , ,( ) ( ) 1 , ( , )i j i j i jb i b j as i j+ − = ∀ ∈ A (16) 

where,  

,

1,an active-type sensor is deployed on Link -
;

0,                        otherwise                               
, : weight ( < <0).

i j

i j
as

α β α β


= 
   

Eq. 15 is used to minimize the required number of active-type sensors, and links 

connecting to origin and/or destination nodes are selected first. Similarly, Eq. 16 is the 

identification equation for active-type sensors. In addition to Eq. 16, the active-type 

sensor location model includes Eqs. 10–13 as model constraints. The parameters, 

 and α β , are the weights of centroid nodes connected links (hereinafter called centroid 

links) and intermediate nodes incident links (hereinafter called intermediate links), 
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respectively, and the absolute value of α  must be greater than that of β  to differentiate 

the relative importance of α  and β  in the minimization program.  and α β , must both be 

less than 0 to prevent all solutions from being calculated as 0. 

2.4 The generalized sensor location model 

Because the passive-type and active-type sensor location models described are both 

subject to degree constraints, reduplication constraints, contradiction constraints, and 

identification constraints, these two heterogeneous sensor location models can be 

integrated to develop a generalized sensor location model. In this report, a generalized 

sensor location model is proposed based on heterogeneous sensor information under a 

budget constraint. The integrated sensor location model is formulated as follows: 

, , , ,
( , ) ( , ) ( , ) ( , )

Min ,sr i j s i j i j
r i j s i j i j

as as as ps rα β γ
∈ ∈ ∈ ∈

     
+ + + ∀ ∈ ∈     

     
∑ ∑ ∑ ∑

A A A A
R S  (17) 

s.t.  

Eqs. 10 through 13  

, , , ,( ) ( ) 1 , ( , )i j i j i j i jb i b j as ps i j+ − ≥ + ∀ ∈ A  (18) 

, ,
( , ) ( , )

i j i j
i j i j

ca as cp ps TC
∈ ∈

∗ + ∗ ≤∑ ∑
A A

 (19) 

where,  

: total budget in traffic sensor deployment;
, , : weight ( < < <0);
: the average cost of an active-type sensor;
: the average cost of an passive-type sensor.

TC

ca
cp

α β γ α β γ  
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Eq. 17 is a direct integration of Eqs. 9 and 15 based on weight. The parameters 

, ,α β γ  represent various weights. Because active-type sensors are able to collect greater 

amounts of flow distribution and flow information than passive-type sensors do, the 

absolute values of the parameters ,α β  are greater than that of γ . Because they capture 

different traffic and path patterns, deploying active-type sensors in centroid links must be 

prioritized; therefore, the absolute value of α  is larger than that of β  in minimization. To 

avoid the unreasonable solutions for the minimization problem, in which all solutions are 

0, this study assumed that < < <0α β γ ; thus, the weights of passive- and active-type 

sensors are inversely proportional to their corresponding cost. A lower cost requires a 

higher absolute value weight ( | | <| |, | | <| |γ α γ β ). The weights of active-type sensor links 

must reflect whether the link is connected to origin or destination nodes. A link 

connected to an origin or destination node is more important than a link connected to a 

noncentroid or intermediate node, but its maximal importance cannot be greater than two 

links connected to noncentroid nodes. Thus, its range is expressed as | | | | <|2 |β α β≤ . The 

generalized sensor location model also includes Eqs. 10–13. In contrast to the set 

covering rule, which requires known link-path incidence or O-D/path incidence matrices, 

the generalized sensor location model requires only a link-node incidence matrix and a 0-

1 elements matrix, which is easily obtained according to a network’s configuration. Eq. 

18 is the identification equation for the generalized sensor location model. Eqs 14, 16, 

and 18 were designed to identify if a Link i-j is equipped with a sensor or without the 

need of deploying a sensor. Under no budget constraints, that is, no budget constraint is 

imposed on both Eqs. 14 and 16, this research defined double 0-1 binary variables, 

,( )i jb i and ,( )i jb j  to formulate the sensor deployment problem for the full observability 

on link flows. Such a variable design can avoid the reduplication and the contradiction 

problems. On the other hand, when a budget constraint is considered (e.g. Eq. 19), Eq. 18 

is formulated as a greater than or equal relationship in the sense that the goal of full 

observability on link flows using both passive- and active-type sensor information might 

not be achieved due to insufficient monetary resources for sensor deployment. When the 

LFS of Eq. 18 is 1, there are two possible results for the RHS, listed below. 
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1) If the cost by adding a sensor on Link i-j does not violate the budget constraint, 

the RHS takes 1 (i.e. the equality relationship), meaning that Link i-j should be equipped 

with a sensor. Accordingly, the model will evaluate if Link i-j is equipped with a passive- 

or active-type sensor based on the relative contribution to the objective function. 

2) If it violates the budget constraint, the RHS takes 0 (i.e. the inequality 

relationship). Under such a condition, Link i-j is not deployed a sensor since insufficient 

monetary sources are available for a sensor deployment. 

On the other hand, when the LFS of Eq. 18 is 0, the RHS will be 0 as well (i.e. the 

equality relationship). Link i-j is not equipped a sensor. In summary, when the LFS of 

Eq. 18 is 1, the RHS will be 0 or 1; if the LFS of Eq. 18 is 0, the RHS will be 0. Such a 

“greater than or equal” relationship for Eq. 18 is specifically formulated to realistically 

reflect practical limitations on budget constraints for sensor deployment. Finally, Eq. 19 

is the budget constraint. 

Note that in the objective function (Eq. 17), passive-type sensors do not 

distinguish origin and destination links (i.e. centroid links). The main purpose of 

deploying passive-type sensors is to collect link flow information for full link flow 

observability purpose. On the other hand, installing active-type sensors at different types 

of links has different implications. Specifically, active-type sensors deployed at centroid 

links are more valuable for path flow or O-D demand estimation than deploying at 

intermediate links (i.e. noncentroid links). If active-type sensors are sequentially installed 

at an origin, a destination, and an intermediate link, it can possibly identify path (flow) 

patterns by matching path information of these three active-type sensors. Such collected 

link flow and partial path (flow) patterns are crucial inputs to a network O-D demand 

estimation model. 
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CHAPTER 3.  LINK-BASED NETWORK O-D DEMANDS ESTIMATION 

Chapter 3 studies the network O-D demands estimation problem by using the flow 

information given by different sensor sources. This chapter discusses the application of 

the link flow and partial path flow information respectively given by passive- and active-

type sensors. A nonlinear program for the network O-D demands estimation problem is 

formulated and solution algorithms are described. In section 3.1 the nonlinear O-D 

demand estimation model is described. In section 3.2 solution algorithms for both the 

sensor location problem and network O-D demands estimation problem are given. 

3.1 The O-D demands estimation model 

Based on the generalized sensor location model, a subset of path flows can be 

obtained. Past studies assumed that link-path incidence matrices are known; however, 

link-path incidence matrices are practically difficult to obtain because they require path 

enumeration. To relax this unreasonable assumption, this study developed an O-D 

demand estimation model in which path information is not required. Nguyen (1977) 

proposed a non-proportional traffic equilibrium assignment model based on the node-arc 

formulation. Nguyen’s model was modified by further incorporating the link flow 

conservation rule into an easily obtained link-node incidence matrix to develop the O-D 

demand estimation model presented in this study, which is formulated as follows: 
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| | | | | |
2 2

, ,
( , ) 1

ˆˆMin ( ) ( )rs rs
i j i j p

i j r s p
y y t f

∈ =
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(20) 
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| |
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1
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=
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(24) 

ˆ 0rst ≥  (25) 

where,  

,

,

ˆ : a vector of estimated link flows;
: observed Link -  flows;

ˆ : estimated Link -  flows;

: the path flows between pair -  using the th path collected from active-ty  
ˆ : an unkno

i j

i j

rs
p

rs

y i j
y i j

f r s p

t

Y

wn O-D flow between pair - ;
: link-node incidence matrix.

r s
LN

 

The O-D demand estimation model is a nonlinear minimized squared program. Eq. 

20 minimizes two terms. The first term is the difference between the measured and 

estimated link traffic flows. The second term is the difference between the observed and 

the estimated O-D flows. Observed O-D flows are partially obtained by aggregating the 

path flows associated with specific O-D pairs provided by active-type sensors. Eq. 21 is 
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the link flow conservation constraint determined according to the link-node incidence 

matrix, which does not include origin or destination nodes. Eq. 22 yields the total origin 

flow to a specific destination node, which is equal to the total link flows connected to this 

specific destination node. Eq. 23 yields the total destination flow from a specific origin 

node, which is equal to the total link flows connected to this specific origin node. Eq. 24 

is the inequality constraint, and implies that true O-D flows are greater than or equal to 

the summation of observed (partial) path flows. Eq. 25 is the nonnegative constraint. The 

decision variables in this estimator are the unknown O-D flows; this model does not 

assume known path and/or prior O-D information, route choice probabilities, or turning 

proportions, and is thus feasible for practical application. 

This research uses observed link flow information and partial path (flow) patterns 

as input data for O-D demand estimation without the need of a known link-path incidence 

matrix and/or the prior O-D information to search for feasible O-D demand solutions. 

The solution for the proposed O-D demand estimation model may not be unique due to 

the underdetermined system and the limited flow information, but it can find out possible 

and reasonable O-D demand solutions with the assistance of active-type sensor 

information. For a nonlinear optimization problem, it can be relaxed by first (second) 

order Taylor series expansion, and this relaxation can be further transformed into a linear 

program with a set of variables. This set of variables can be regarded as the descent of 

original variables, and the optimal solution is based on sequentially solving the descent 

until it is optimal. If the descent is not efficiently converged, one can consider the radius 

of the descent; the optimal criterion is based on that the radius is within a pre-specified 

acceptable tolerance. For the network O-D demand estimation problem, despite it is 

difficult to obtain a unique solution on O-D demand estimates, the second best approach 

to solve the O-D demand estimation problem under a certain level of tolerance or error is 

available. 
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3.2 Solution Algorithms 

The proposed generalized sensor location model is used to determine the minimal 

required number of passive-type and active-type sensors, considering degree constraints, 

contradiction constraints, budget constraints, and the identification equation. Because the 

decision variable is a 0-1 integer, the objective function and constraints are linear integer 

equations, and the model can be determined using a 0-1 integer program. The 

mathematical optimization tool LINGO 11 (LINDO Systems Inc., Chicago, IL) was used 

to solve the generalized sensor location model. 

The O-D demand estimation problem was formulated using a nonlinear least 

squares (NSL) program with linear constraints, and it was solved using the nonlinear 

solver of LINGO 11. The first-order derivate was calculated in the nonlinear solver using 

backward analytical derivatives, and successive linear programming (SLP) directions 

were used to determine directions. First-order Taylor series expansion, a linear 

approximation method, was adopted for computations to reduce iteration time. 
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CHAPTER 4.  CASE STUDIES 

Chapter 4 evaluates the proposed generalized sensor location model for network 

O-D demands estimation purposes through numerical tests using two networks: a 

fishbone network (Hu et al., 2009) and a simplified real road network. Section 4.1 

conducts the numerical test in light of the fishbone network. Section 4.2 evaluates the 

proposed models using a simplified real road network at NCKU. Section 4.3 provides a 

discussion on the link-based and path-based flow estimation approaches for the NSLP. 

4.1 The fishbone network 

4.1.1 Fishbone network without budget constraints 

The generalized sensor location model was evaluated without budget constraints, 

with the additional constraint that active-type sensors could not exceed two-thirds of the 

total number of deployed sensors. This additional constraint ensured that all deployed 

sensors were not active-type sensors or passive-type sensors. The results indicated that 12 

sensors (4 active-type sensors and 8 passive-type sensors) were required. This number 

conformed to the upper-bound ratio proved by Ng (2012), (m-n)/m, where m is the 

number of links, and n is the number of noncentroid nodes ([18-6]/18). The sensor 

location configuration is shown in Fig. 4; the red dotted arrows denote active-type 

sensors, and the blue dotted arrows denote passive-type sensors. 
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Legend: 

(shaded node): O-D node 

(unshaded node): intermediate node 

   (dotted arrow): unequipped link 

   (red solid arrow): active-type sensor equipped link 

   (blue solid arrow): passive-type sensor equipped link  

Fig. 4. Result of the NSLP for the fishbone network without budget constraint. 

 

This sensor location configuration achieved the full observability of link flows, and 

each unequipped link flow could be inferred. The results of two test scenarios are shown 

in Table 4; the first test scenario involved executing O-D demand estimation by 

incorporating flow information provided by passive-type sensors, and the second test 

scenario involved executing O-D demand estimation by incorporating both link flow 

information provided by passive-type sensors and partial path flow information provided 

by active-type sensors. These two test scenarios used the same number of sensors, but the 

sensors were deployed at different links. Based on the information provided by the four 

active-type sensors, partial traffic patterns were identified. These reduced the average 

MAPE from 76.87% to 6.98%, a 70% improvement of the average MAPE for the 

estimation of network O-D demands.  
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Table 4. Results for the fishbone network without budget constraint. 

Data 
source(s) 

O-D 1 9T −  1 10T −  2 9T −  2 10T −  
Average 
MAPE 
for O-D 

flow 
estimation 

Average 
MAPE 
for link 

flow 
inference 

True 
volume 98 223 237 387 -- -- 

Passive-
type sensor 

Estimated 
volume 203 422 436 85 -- -- 

MAPE 107.14% 89.24% 83.97% 27.13% 76.87% 0% 
Passive- & 
active-type 
sensors 

Estimated 
volume 85 236 250 374 -- -- 

MAPE 13.27% 5.83% 5.49% 3.36% 6.98% 0% 
 

4.1.2 Fishbone network under budget constraints 

To evaluate the model under budget constraints, this study assumed that the costs of 

passive-type and active-type sensors were 20 and 80, respectively, and the total budget 

was 470. The results indicated that four passive-type sensors and four active-type sensors 

could be installed at various strategic links (see Fig. 5), for a total of eight sensors. 

Because of the budget constraint, information on certain unequipped links could only be 

partially inferred based on the observed link flows. The average MAPE for the link flow 

inference was 10.89%, indicating that, under the budget constraint, certain link flows 

were not inferable. Based on the numerical results of the O-D demand estimation shown 

in Table 5, even under a budget constraint, the O-D demand estimation model still 

provided error-free results, even on unequipped link flows and O-D flows in small 

networks with fewer links and paths. The flow estimation results were not substantially 

affected by the route choices of users. 
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Fig. 5. Results of the NSLP in the fishbone network with budget constraint. 

 

Table 5. Results for the fishbone network with budget constraint. 

Data 
source(s) 

O-D 1 9T −  1 10T −  2 9T −  2 10T −  

Average 
MAPE for 
O-D flow 
estimation 

Average MAPE 
for link flow 

inference 

True volume 98 223 237 387 -- -- 
Passive- & 
active-type 
sensors 

Estimated 
volume 98 223 237 387 -- -- 

MAPE 0.0% 0.0% 0.0% 0.0% 0.0% 10.9% 

 

As shown in Tables 4 and 5, the results indicated that full observability of link 

flows may result in the partial observability of O-D demand flows. In addition, partial 

observability of link flows may also result in full observability in O-D demand 

estimation. 

4.2 The NCKU network 

The NCKU network (Fig. 6) is located in the eastern district of Tainan City in 

Southern Taiwan, bordering Tainan Station (Node 32 in Fig. 6). The NCKU network 

consists of seven main campuses of NCKU, including the Li-Hsing (Node 1), Chien-Kuo 

(Node 2), Ching-Yeh (Node 3), Kuang-Fu (Node 4), Cheng-Kung (Node 5), Tzu-Chiang 
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(Nodes 6 and 8), and Sheng-Li (Node 7) campuses. Nodes 1 to 8 are the O-D on-campus 

nodes, and Nodes 9 to 14 are the O-D off-campus nodes. The NCKU network has three 

urban arterials connected to the National Sun Yat-Sen freeway system: the first is 

Dongfeng Rd., represented by Nodes 15, 16, 17, 18, 19, and 20; the second is Xiaodong 

Rd., represented by Nodes 10, 22, 23, 24, 25, 26, 27, 28, and 14; and the third is 

Dongning Rd., represented by Nodes 32, 33, 34, 35, 36, 37, 38, and 39. Four urban streets 

cross the main campuses: the first is University Rd., represented by Nodes 32, 33, 34, 35, 

36, 37, 38, and 39; the second is Shengli Rd., represented by Nodes 16, 21, 24, 29, 35, 

40, 43, and 45; the third is Changrong Rd., represented by Nodes 18, 26, 30, 37, 41, 44, 

and 47; and the fourth is Linsen Rd., represented by Nodes 20, 28, 31, 39, 42, and 48. 
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Legends: 

(red shaded node): on-campus O-D node 
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(blue shaded node): off-campus O-D node 

(unshaded node): intermediate node 

             (black solid arrow): directed link or arc 

Fig. 6. NCKU network. 

 

The true O-D dataset was obtained from the Tainan City home survey (Yen et al., 

2000) conducted by COMDYCS Technology Consultants, Inc. This data set was used to 

evaluate the performance of the proposed O-D demand estimation model, and the 

generalized sensor location model with and without budget constraints. 
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Legends: 

(red shaded node): on-campus O-D node 

(blue shaded node): off-campus O-D node 

(unshaded node): intermediate node 

   (black dotted arrow): unequipped link 

   (red solid arrow): active-type sensor equipped link 

               (blue solid arrow): passive-type sensor equipped link 

Fig. 7. Results of the NSLP in the NCKU network without budget constraints. 

 

4.2.1  The NCKU network without budget constraints 

The results indicated that the NCKU network required 48 active-type sensors and 72 

passive-type sensors. The total number of deployed sensors was 120; this conformed to 

the upper-bound ratio proved by Ng (2012) ([154-34]/154). The sensor location 

configuration is shown in Fig. 7; solid red arrows represent links monitored by deployed 

active-type sensors, and dotted blue arrows represent links monitored by passive-type 

sensors. 

The O-D demand estimation results for the NCKU network, without budget 

constraints, are shown in Fig. 8 in terms of the number of O-D pairs corresponding to 

different MAPE ranges. The results of two different scenarios are shown: the first 

scenario involved using information provided by passive-type sensors, and the second 

scenario involved using information provided by both passive- and active-type sensors. 

Without budget constraints, both scenarios achieved full observability of link flow 

inference (that is, the average MAPEs for link flow inference in the two test scenarios 

were 0%) when using the maximal number of traffic sensors. Using only passive-type 

sensor information to estimate network O-D demands provided biased O-D demand 

estimates for certain O-D pairs. The average MAPE for estimating O-D flows by using 
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only passive-type sensor information was 45.21%. Incorporating partial path information 

provided by active-type sensors into the proposed O-D demand estimation model 

substantially reduced the MAPEs for certain O-D pairs, and the average MAPE for 

estimating O-D flows by using information provided by both passive- and active-type 

sensors was 21.46%. Checking the variations of MAPEs, there are 12 O-D pairs whose 

MAPEs are larger than 100% using only passive-type sensor information ( 2 7T − , 3 7T − , 

4 6T − , 5 2T − , 5 3T − , 8 6T − , 9 1T − , 9 4T − ,  9 10T − , 13 12T − , 13 15T − , 14 8T − ). When the partial path flow 

information given by active-type sensors is applied to the NCKU network, there are 7 O-

D pairs whose MAPEs are reduced from >100% to <10% ( 2 7T − , 3 7T − , 4 6T − , 5 2T − , 5 3T − , 

8 6T − , 14 8T − ), 3 O-D pairs’  MAPEs are reduced to <75% ( 9 1T − , 9 4T − , 13 15T − ), and 2 O-D 

pairs’ MAPEs are reduced to <100% ( 9 10T − , 13 12T − ). The MAPEs for the remaining O-D 

pairs still keep a similar trend.  

When active-type sensors are incorporated into the O-D demand estimation 

problem, the MAPEs for some O-D pairs are reduced and some are increased. To fairly 

evaluate of the performance of the proposed O-D demand estimation model, this research 

defines a relative assessment index, called Reduced MAPE (RMAPE), defined in Eq. 27. 

RMAPE =oMAPE wMAPEr-s r-s r-s−  (27) 

where,  

RMAPE :  reduced MAPE for O-D pair ;
oMAPE :   MAPE for O-D pair  without active-tpye sensor information;
wMAPE :   MAPE for O-D pair  with active-tpye sensor information.

rs

rs

rs

r - s
r - s
r - s

  

For the NCKU network without budget constraint case, 12 O-D pairs had positive 

RMAPEs among 141 O-D pairs. The maximal RMAPE is 700%, and the minimal 

RMAPE is -84.85%. There were only five O-D pairs with negative RMAPEs in the 

totally investigated 141 O-D pairs. Among the total 141 O-D pairs, the total RMAPE is 
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3348.91%; the average of RMAPE is 23.75%. The RMAPE evaluation results indicated 

that averagely the MAPE for each O-D pair can be reduced by 23.75% by incorporating 

active-type sensor information. 

 

 

Fig. 8. Results for the NCKU network without budget constraint. 

 

4.2.2 The NCKU network under budget constraints 

To evaluate the model in the NCKU network under budget constraints, this study 

assumed weights of 8, 4, 2α β γ= − = − = −  in Eq. 17, that the costs of passive-type and 

active-type sensors were 20 and 80, respectively, and that the total budget was 3000. The 

results indicated that 69 sensors were required: 27 passive-type and 42 active-type 

sensors (see Fig. 9). Only partial link flows across the links without sensor monitoring 

capability can be inferred based on the observed link flows because of the budget 

constraints. The average MAPE for the link flow inference was 62.13% because of the 

low sensor deployment rate (69/154 = 49%). The O-D demand estimation results, shown 
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in Fig. 10, indicated that the performance of the O-D demand estimation model was 

satisfactory, and that the results improved with the incorporation of partial path flow 

information provided by active-type sensors. The average MAPE for O-D flow 

estimation using information provided by both passive- and active-type sensors was 

20.67%. 
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Fig. 9. Results of the NSLP in the NCKU network with budget constraint. 

 

The results under budget constraints indicated that partial information provided by 

passive-type and active-type sensors was sufficient to obtain satisfactory O-D demand 

estimates. This implies that additional link flow inputs in the O-D demand estimation 
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model do not necessarily result in improved O-D demand estimation performance, 

because link flow information may be either linearly dependent on each other or 

redundant. However, partial link and path flow information provided by passive- and 

active-type sensors deployed at certain critical links could be used to obtain satisfactory 

solutions to the O-D demand estimation problem. Theoretically, the quality of network 

O-D demand estimation is highly dependent on the quality of link and/or path flow 

information. Because of budget constraints, active-type and passive-type sensors can be 

partially deployed only at certain strategic links in a target network, potentially resulting 

in biased link flow estimates. However, regardless of inaccurate link flow inferences, 

incorporating information on partial path flow patterns provided by deployed active-type 

sensors improves O-D demand estimates. Path flow and/or traffic pattern information 

provided by active-type sensors is highly useful in the estimation of network O-D 

demands. For the variations of MAPE ranges, it also gets the similar result to the no 

budget condition. The O-D pairs with >100% MAPE can be reduced. More O-D pairs can 

obtain <10% MAPE. 

For the NCKU network under a budget constraint case, there were 34 O-D pairs 

with positive RMAPEs among the total 141 O-D pairs. The maximal RMAPE is 700%. 

The minimal RMAPE is -99.68%. In addition, there were 23 O-D pairs with negative 

RMAPEs in the total 141 O-D pairs. Among the total 141 O-D pairs, the total RMAPE is 

3459.90%, the average RMAPE is 24.54%. The RMAPE evaluation results indicated that 

averagely the MAPE for each O-D pair can be reduced by 23.54% by incorporating 

active-type sensor information. 
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Fig. 10. Results for the NCKU network with budget constraint. 

 

4.3 Discussion: path-based versus link-based approaches 

Most studies on the estimation of network O-D demands have assumed the 

availability of known link-path incidence or O-D/path/link incidence matrices. Based on 

this specific matrix, a set of O-D and/or paths has respective relationships with the 

intermediate links, and results of O-D/path flows estimation are highly dependent on the 

quality and quantity of observed link flows. However, in practice, link-path incidence and 

O-D/path/link incidence matrices are not easily obtained because of the path enumeration 

problem. The proposed link-based O-D demand estimation model estimates path flows 

based on a non-proportional traffic assignment principle, and relaxes this unreasonable 

assumption; moreover, this model is able to obtain satisfactory estimates on O-D flows. 

The estimated O-D demands are constrained by links connected to origin and destination 

nodes or centroid links (see Eqs. 22 and 23), and intermediate nodes are constrained by 

the flow conservation rule (see Eq. 21). In this proposed model, the O-D demand 
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estimation result is highly dependent on links connected to centroid nodes. Because of 

budget constraints, certain link flows could not be satisfactorily inferred. Nevertheless, 

the results of the estimated O-D demands can be improved by appropriately installing 

active-type sensors at certain strategic links to obtain partial path pattern and/or flow 

information. 
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CHAPTER 5.  CONCLUSIONS 

This chapter summarizes the research, highlights its contributions, and proposes 

directions for future research. 

5.1 Summary 

This study addresses the two primary objectives: 

1. Propose an effective generalized sensor location model for sensor location 

flow-observability and sensor location flow-estimation problems. 

2. Give an assumption-free, link-based network O-D demands estimation 

formulation taking advantage of the flow information given by different 

sources of sensors. 

5.2 Future research directions 

This study solved the sensor location and network O-D demand estimation 

problems in two steps. The first step focused on the generalized sensor location model, 

and the second step focused on the O-D demand estimation model. These two steps were 

independent of each other. We propose two future research directions. First, bi-level 

programming, in which the upper level is a heterogeneous traffic sensor location model 

and the lower level is an O-D demand estimation model, can be studied, and based on the 

correlation between the upper and lower levels. Second, the heterogeneous traffic sensor 

location model can be integrated with the network O-D demand estimation model in a 

single-step framework. A bi-level, integrated model framework would be more 

straightforward and useful in practical applications.  
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